Leading Industrial Gear Manufacturers

Gears are mechanical devices that transfer torque and motion or set mechanical motion in action through the engagement of other gears, a shaft or a series of parts. Gears interlock with one another and turn together with the help of evenly cut teeth. Teeth allow different sized and shaped gears to interlock with one another. Read More…

Gear Manufacturers Gears are mechanical devices that transfer torque and motion or set mechanical motion in action through the engagement of other gears, a shaft or a series of parts.

Omni G & M Corporation is a leading gear fabricator specializing in precision machined and custom solutions in a variety of sizes and types. Please check out Omni G & M’s website or call a friendly personnel member today!

Omni Gear & Machine Corporation $$$

Gears are what we do best, and we are experts in our field. We have three generations of experience backing our company, and we use all of it to benefit you in any way possible.

Commercial Gear & Sprocket Company, Inc. $$$

Gear Motions is a leading gear manufacturer specializing in supplying custom cut and ground gears. Our wide range of precision gear manufacturing capabilities and services deliver quality gears to meet almost any application.

Gear Motions, Inc. $$$

Manufacturing industrial and commercial gears is what Houston Gear USA does. We produce gears from 1 3/4 DP – 200 DP in a choice of materials. Choose from spur gears, custom gears, helical gears, double helicals, splines, straight bevel gears, worm gears, sprockets, and herringbone gears.

Houston Gear USA, Inc. $$$

At Cage Gear & Machine, we specialize in custom large gear machining and repair as well as large manual machining. We can manufacture gears from 2" outside diameter all the way to 180" outside diameter. If you don't need complete parts, we can also provide cut teeth only operations or inspection services. And don't throw out those damaged gears just yet. We can save you thousands of dollars...

Cage Gear & Machine, LLC $$$

With over a century of experience, The Adams Company has established themselves an outstanding reputation for quality custom gear and shaft production. We continue to outmatch the competition, whether it is from our original designing and manufacturing hobbing equipment to investigating the latest technologies in gear inspection, hobbing, and guideless shaping. We offer a range of products...

The Adams Company $$$

Cleveland Gear Company has specialized in worm gear technology including industrial gears, helical gears, worm gears and precision gears since 1912. Applications include steel production, electric power generation, and material transport. Fulfilling your exact requirements is what has and continues to make Cleveland Gear one of the top manufacturers of gearing and enclosed gear drives.

Cleveland Gear Company $$$
Get Your Company Listed
placeholder image

Industrial Gear Applications

Gear applications are quite diverse and highly customizable; they appear anywhere that an application requires speed reduction, speed increase, power transmission, motion transmission or force reduction.

Most often, industrial gear applications appear in industries including: automotive, aviation, railway, transportation and food production. They can be found in: cars and trucks, gear motors, bicycles, motorcycles, airplanes, belt pulley systems and more.

The History of Industrial Gears

Humans have been manufacturing gears for thousands of years. The earliest examples of gears we have come from 4th century BC China. They are housed at the Luoyang Museum in Henan Province, China. The first differential gear was also made in China, as suggested by a preserved gear, found with a Chinese south-pointing chariot. This gear dates back to the first millennium BC. The south-pointing chariot was designed by Chinese engineer Ma Jun, who was active between 220 and 265 BC. In 725, Chinese engineers built the first geared mechanical clocks.

The oldest European gear artifacts we have come from between 150 and 100 BC. These gears were constructed as a component of the Antikythera mechanism, an ancient Greek computer devised to calculate astronomical positions. In addition, Hero of Alexandria (a mathematician and engineer who was either a Greek or a Hellenized Egyptian) wrote about gear manufacturing in Roman Egypt circa 50 AD. The basis of his work, though, can be traced back to the 3rd century BC Alexandrian school of thought. Another great influencer of early European/Roman/Greek gear manufacturing was Archimedes, the Greek polymath who lived between 287 and 212 BC.

In the medieval Middle East (circa 1206 AD), Arab engineer Al-Jazari invented the segmental gear. This gear receives and communicates reciprocating motion to and from a cogwheel. Nearby, between the 13th and 14th centuries in the Indian subcontinent, the worm gear was invented for use in roller cotton gins. Meanwhile, in medieval England, Richard Poore and Elias of Dereham built the Salisbury cathedral clock. Built in 1386, this geared mechanical clock is still in use today.

Gears were especially useful during the Industrial Revolution, when the use of machines and machine engines exploded. With the advent of steam power, for example, gear manufacturers had to build stronger and more durable gears that could help move trains. Since then, gear machining has only become more important.

Modern gears take many cues from their predecessors. However, they are much more versatile and useful than older industrial gears. This is because they are generally stronger and smaller and can be made from many more materials, such as plastic. In addition, they can be made with greater precision than earlier gears, thanks to the advent of CNC technology.

Industrial Gear Design

To help gears withstand wear and tear, they may also use a variety of cutting techniques, such as gear hobbing. To increase or reduce shaft rotational speed, manufacturers join differently sized gears. Also, to extend and improve the working life of gear systems, gears generally use some form of lubrication. Well-maintained gears yield great results.

These gears may be made from any number of materials, depending on their application requirements. Most are made from metals or hard plastics. Demanding automotive applications, for example, engage hard metals like copper, brass, steel and, occasionally, titanium. In contrast, machinery applications that require lightweight components often utilize water-resistant plastic gears, like those made from polycarbonate or nylon.

When manufacturers design industrial gears, they choose teeth numbers and gear ratios* with the knowledge that these determine a gear’s durability and strength, as well as the speed, function and control the gear will wield within a larger assembly. Using the production techniques outlined earlier, manufacturers can create custom gears for any setting.

*The relationship between gear size and speed is called “speed ratio,” or alternatively, “gear ratio.” Gear ratio can be calculated using a gear’s number of teeth. For example, two interlocking gears that have 60 teeth and 30 teeth, respectively, have a gear ratio of 2:1.

Types of Industrial Gears

The world of industrial gears is quite varied. Some common types include: spur gears, gear sprockets, planetary gears, bevel gears, spline gears, helical gears, rack and pinion spur gears, worm gears and differential gears.

Spur Gear
The spur gear, also called a straight-cut gear, is the simplest type of gear available. Straight-sided along the gear wheel’s axis, with straight teeth in line with the axis, spur gears are frequently used as sprockets. Other types of spur gears transmit motion and torque laterally through compatibility with other parallel aligned gears. Such gears are main components in planetary gears.

Gear Sprocket
Sprockets are thin gears with easy-locking teeth that lock into roller chains, like bike gears. They’re used for non-slip pulley power transmission.

Planetary Gear
Planetary gears, also called epicyclic gear trains, are used in complex applications that require smooth torque transmission, such as drivetrains and automotive transmissions. The spur gear used by planetary gears is called a “sun spur,” which is surrounded by three-plus exterior gears called “planet gears.”

Spline Gear
Spline gears are either cylindrical or rod-shaped with straight teeth that allow them to transmit motion laterally by fitting inside internal devices or gears.

Helical Gear
Helical gears are fast rotating gears capable of supporting heavy loads efficiently and smoothly. They feature teeth inclined towards the axis of the shaft and positioned like a helix, thus the name. Quieter than many other gears, including spur gears, helical gears are popular with applications that feature both radial loads and thrust loads.

Rack and Pinion Spur Gear
Rack and pinion gears feature a rack meshed with a pinion. A rack is a toothed bar or rod with an infinite radius of curvature. When meshed with a pinion, as the pinion turns, the rack moves in a straight line, and converts torque to a linear force. Rack and pinion spur gears are common components of rack railways and automobiles. In the latter, they convert steering wheel rotation into the left-to-right motion of tie rods.

Worm Gear
Worm gears are a type of helical gear with a larger helix angle, close to 90 degrees, and long body in the axial direction. These features cause worm gears to resemble screws. The best way to distinguish a worm gear from a regular helical gear is by looking at its teeth—if even just one tooth persists for a full rotation around the helix, it’s a worm, not a helical gear. Worm gears are valued for their high torque, low speed gear ratio and their simplicity and compactness.

Differential Gear
Differential gears feature two shafts that can be independently adjusted in angle and direction. Differential gears are designed to mesh and work with one another at a controlled speed in order to produce a desired amount of torque. Mostly, differential gears are used in automobiles.

Bevel Gear
Bevel gears are conically shaped, allowing them to interlock with other gears perpendicularly, making them useful for rear end wheel torque applications. Bevel gears have either straight or curved teeth, in which case they are called spiral bevel gears. Curved teeth are helpful for speed reduction of process machines like packaging machinery, textile looms, material handling systems and conveyor systems.

Bevel Gears: How They Work

Bevel gears use two conical toothed wheels to transfer power between the axes as they turn. They are very common due to their effectiveness and reliability and have many applications in engineering industries, such as automotive, control systems, power plants, and other kinds of machinery. There are numerous types of bevel gears, which depend on the angle they are configured in. The most common one would be the 90° angle. These gears are usually configured inside a gearbox.

Types of Bevel Gears

There are many types of bevel gear, but the most common types are the straight bevel gear and the spiral bevel gear. The main difference that distinguishes these two types is the shape of the gear, and this difference in geometry will result in different efficiency. 

  1. Straight bevel gears are considered the simplest of all. Since the teeth are straight, they have direct contact between the gear and pinion. In addition to that, they have many applications, particularly in the automotive industry.

The advantages of using straight bevel gears are:

  •  Easy to manufacture due to simplicity
  • Direct instantaneous lines of contact, which result in more tolerance for mounting

While the major drawbacks are:

  • Low speed and static
  • Subject to sudden impact or shock loading, which can lead to a broken gear
  • Lots of vibration and noise 
  1. Spiral bevel gears are more complicated because the teeth are curved, so a special manufacturing technique is required to produce such products. 

The advantages of using spiral bevel gears are:

  • Can exert more axial thrust and higher load sharing due to its ability to change direction with the hand of the spiral
  • Less noise and vibration due to its spiral geometry
  • Gradual engagement and disengagement, which result in smoother operation

While the major drawbacks are:

  • Higher manufacturing costs due to the need for utilizing special equipment, such as CNC machining, to produce parts.
  • Compatibility issue. The parts are not interchangeable since each is designed differently.

Factors in Choosing the Appropriate Bevel Gear

As mentioned earlier, each type of bevel gear has its advantages and disadvantages, and one must consider these factors before deciding which to buy. The easiest way to determine which type to buy is to first take a look at what it is going to be used for.  

  1. Automotive – if you are looking for a bevel gear that is to be used inside a car, then consider this angular gearbox (spiral bevel), which can be designed in a compact way and provide high efficiency, but also still maintain a low noise level.
  2. Machinery – if one wishes to apply bevel gears in industrial machinery uses, such as gear transmission with reliable power transmission and a compact structure, then consider the Hansen industrial gearbox (straight bevel). It has a high transmission power, with the ability to provide a torque of 36,000 Nm up to 1,200,000 Nm. In addition to that, it can be converted to an industrial gearbox according to the needs of the customer. Its applications include packaging machinery, chemical equipment, metallurgical mining equipment, steel power equipment, road construction machinery, building material industry, etc.
  3. Heavy equipment – straight bevel gears are used by heavy equipment for many purposes, such as propulsion, which is similar to the automotive differential system. This crane gearbox has many features. The distance and transmission ratio are optimized for crane operations, which include loading and unloading materials. Furthermore, the parts are made out of high-quality alloy steel and are interchangeable since they are straight bevels, so it is easy to find parts if the components become defective at some point in time. In addition to that, it has applications in metallurgy, mining, building materials, and other industrial sectors.

Industrial Gear Accessories

Common gear accessories include: handwheels, stem protectors, stem nuts, miter boxes, housings, gear lubricant, gear oil, temperature monitors and lug drives.

Proper Care for Industrial Gears

There are a number of ways that you can care for your gears and make sure they live a long, fruitful working life.

Read Labels
First, always read the labeling and info that comes with your gearbox. Check the ratings to double check that your gearbox matches your intentions.

Limit Dust Contact
Dust and other particles floating around in the air can really damage your gears if you allow them to build up. To prevent this, start by limiting the dust and pollution in your production facility. Systems that can help air quality include: air curtains, vacuum cleaners and dust management systems. These should not only remove particles from the air, but from the homes they’ve found in the nooks and crannies of your machines and their gears.

Limit Fluid Contact
Likewise, make sure to keep liquids and fluids like water and chemicals away from your gears. Allowing them to make contact can cause the system to malfunction, corrode, rust or otherwise change.

One way you can keep liquid at bay, is by regularly checking shaft seals to make sure they have not broken. Broken seals lead to leaks, which can not only cause liquid contact, but also cause higher fuel bills and hindered functioning.

Lubricate Your Gears
Another way to keep your gears healthy is by regularly applying lubricant. This prevents friction and all the problems that come along with it, including reduced working speeds. Always make sure to check with your manufacturer before using a lubricant, as not all lubricants are suited for different gears.

Do Not Allow Overheating
Finally, never allow the engine in which your gears are working to overheat. Overheating can lead to many problems, such as inadequate process, overloading and pollutants on the gear shaft or teeth. To make sure your gears do not overheat, regularly check the engine.

Industrial Gear Standards

Like most industrial mechanisms, the standards to which your gears must adhere depend on your industry, application and region. For example, if your application is in food production and in the United States, it must be FDA approved.

In the United States, one of the most highly valued gear standards organizations is the American Gear Manufacturers Association. AGMA also helps set up American ISO standards. We highly recommend you ask for AGMA certified gears, whether or not your industry/application requires it.

How to Find the Right Industrial Gear Manufacturer

There is an overabundance of industrial gear manufacturers offering their services on their interest. While there are some good ones out there, there are definitely some not-so-good ones out there as well, and it can be extremely confusing and overwhelming for someone seeking the right manufacturer. That’s why we’ve taken the time to put together a list, complete with profiles, of high quality industry leaders in whom you can put your trust. For your custom gear application, we recommend you choose your manufacturer from among this list.

Of course, we know you can’t choose every single one, even if they are all experienced manufacturers. So how do you choose? We suggest you start put together a list of your specifications, complete with requirements related to your budget, timeline and delivery preferences. Then, with your list in hand, browse industrial gear companies listed on this page. Pick out three to four with services that you think will best serve your needs. Then, reach out to each of them individually to discuss those needs. Once you’ve done that, compare and contrast your conversations. Choose the manufacturer in whom you have the most confidence.

Check out our Roll Forming website
Check out our Die Castings website

Gear Manufacturers Informational Video


Gears Power Pages

Bevel Gears

Bevel Gears

A bevel gear is a toothed rotating machine element used to transfer mechanical energy or shaft power between shafts that are intersecting, either perpendicular or at an angle. This results in a change in the axis of rotation of the shaft power...

Helical Gears

Helical Gears

A gear is a particular kind of simple machine that controls the strength or direction of a force. A gear train is made up of multiple gears that are combined and connected by their teeth. These gear trains allow energy to move from...

Planetary Gears

Planetary Gear System

A planetary gear is an epicyclic gear that consists of a central gear, referred to as the sun gear and serves as the input gear, which has three or more gears that rotate around it that are referred to as planets. The planet gears engage with a ring gear that encircles the sun...

Plastic Gears

Plastic Gears

A plastic gear is a toothed wheel made up of engineering plastic materials that work with others to alter the relation between the speed of an engine and the speed of the driven parts. The engineering plastic materials used in manufacturing plastic gears can be...

Spur Gears

Spur Gears

A spur gear is a cylindrical toothed gear with teeth that are parallel to the shaft and is used to transfer mechanical motion and control speed, power, and torque between shafts. They are the most popular types of cylindrical gears and...

Worm Gears

Worm Gears

A worm gear is a staggered shaft gear that creates motion between shafts using threads that are cut into a cylindrical bar to provide speed reduction. The combination of a worm wheel and worm are the components of a worm gear...

Types of Gears

Types of Gears

A rotary circular machine with a tooth in its structure and is used to transfer torque and speed from one shaft to another is called a gear. Gears are also known as cogs and have cut teeth in the cogwheel or gear wheel...

Ball Screws

Ball Screw Animation

Ball screws are mechanical linear actuators that consist of a screw shaft and a nut that contain a ball that rolls between their matching helical grooves. The primary function of ball screws is to convert rotational motion to linear motion...

Lead Screw

Lead Screws

A lead screw is a kind of mechanical linear actuator that converts rotational motion into linear motion. Its operation relies on the sliding of the screw shaft and the nut threads with no ball bearings between them...

Power Transmission Equipment

Featured Industries